sábado, 29 de septiembre de 2012

Biodiversidad

Se le llama biodiversidad al conjunto de todos los seres vivos y especies que existen en la Tierra y a su interacción.
De acuerdo con el Convenio sobre la Diversidad Biológica, que hasta febrero del 2000 había sido ratificado por 177 países, la biodiversidad es la variabilidad de organismos vivos de cualquier fuente, incluidos, entre otras cosas, los ecosistemas terrestres y marinos y otros ecosistemas acuáticos y los complejos procesos ecológicos de los que forman parte; comprende la diversidad dentro de cada especie (genética), entre las especies y de los ecosistemas.
La gran biodiversidad es el resultado de la evolución de la vida a través de millones de años, cada organismo tiene su forma particular de vida, la cual está en perfecta relación con el medio que habita. El gran número de especies se calculan alrededor de treinta millones; esta cifra no es exacta debido a que no se conocen todas las especies existentes en nuestro planeta.
El concepto biodiversidad se refiere a los diferentes lugares y formas de vida que existen sobre la Tierra, tanto los naturales como los creados por el ser humano; por ejemplo, los agroecosistemas.

Tres niveles y dos componentes

Esta sola palabra, biodiversidad, abarca un amplio espectro y por lo tanto tiene diversas implicaciones. En primer lugar, como consta en su definición, incluye tres niveles: los genes, las especies y los ecosistemas.
Pero además implica dos componentes: uno tangible —que incluye los recursos biológicos como la madera o la pesca— y otro intangible, ligado con los conocimientos, las innovaciones y las prácticas humanas asociadas con la biodiversidad (por ejemplo, las técnicas agrícolas o los conocimientos científicos).
La definición se extiende hacia un tercer plano pues sus connotaciones están cruzadas también por valores. Estos son de tipo económico, ecológico, ético, cultural, social, científico, educativo, recreativo y estético, entre muchos otros.
La diversidad biológica se expresa generalmente en términos del número de especies que viven en un área determinada.
Cerca del 75 por ciento de la biodiversidad del planeta está concentrada en apenas diecisiete países, los cuales son considerados megadiversos.

Los ecosistemas

Un ecosistema está formado por una comunidad de organismos que interactúan entre sí y con el medio circundante. Son complejas redes ubicadas en espacios geográficos determinados y que pueden ser naturales o creadas por los seres humanos, como los campos de cultivo o las ciudades.
Los ecosistemas son un bullicio: animales, plantas, hongos, virus y microorganismos en interacción con la lluvia, la temperatura, el suelo, la salinidad y otros factores... ¡son la biodiversidad en su mayor nivel! Algunos ecosistemas son los páramos, los manglares y los bosques amazónicos.
La diversidad de ecosistemas se debe a las diferentes condiciones climáticas y geográficas —entre otras— que ocurren en cada lugar. Por ejemplo, en los páramos las plantas tienen hojas pequeñas para sobrevivir al frío, mientras en la planicie amazónica los árboles han desarrollado estrategias para aprovechar los escasos nutrientes del suelo tales como desplegar grandes raíces superficiales.
Asimismo, en los bosques secos de la Costa viven especies adaptadas a un medio árido, el cual está determinado por la influencia de la corriente fría de Humboldt, fenómeno que provoca la disminución de las lluvias durante la mayor parte del año.

Las especies

Una especie es un conjunto de organismos que comparten muchas características —entre ellas, las genéticas— y que pueden procrear descendientes fértiles; es decir, que pueden reproducirse (en contraste, los híbridos como la mula no pueden tener progenie).
Ejemplos de especies son el oso de anteojos, el cedro y los seres humanos.
Así, la diversidad de especies se refiere a la variabilidad de animales, plantas, hongos, virus y otros microorganismos que habitan en un lugar determinado. Este lugar puede ser toda la Tierra, un país, una región o una isla.
Sin embargo, las especies no están distribuidas uniformemente sobre el planeta, y hay países como el Ecuador que albergan un número mayor; en países como este muchas de las especies son endémicas (aquellas cuya distribución está restringida a un área específica, en este caso el territorio nacional). La iguana marina, que vive únicamente en Galápagos, es una especie endémica.
Debido a que el número de especies en el mundo es sumamente grande, para facilitar los análisis se las clasifica en grandes grupos como mamíferos, aves, reptiles, anfibios, peces, insectos o plantas.

Los genes

Los genes son una parte de las células donde está almacenado el material hereditario que pasa de una generación a otra.
Cada gen posee información sobre una o varias características físicas (como el color de la piel), controla funciones reguladoras de la vida (como la elaboración de proteínas),o puede albergar información relacionada con el comportamiento (mayor o menor agresividad).
Sin embargo, los genes de los diferentes miembros de una misma especie no son copias exactas.
Así, las numerosas variedades de maíz que existen en Latinoamérica contienen genes distintos, y es esta diversidad la que propicia que algunas plantas sean resistentes a las plagas mientras otras son fácilmente infestadas.
Los tres niveles de la biodiversidad no son excluyentes; por el contrario, éstos se compenetran a plenitud. Los genes están dentro de las especies y éstas constituyen una parte fundamental de los ecosistemas.
La biodiversidad es una sociedad que funciona perfectamente y que ha sido formada durante millones de años. Su conservación incumbe a todos los habitantes de este planeta, y su pérdida implicará graves consecuencias ecológicas, sociales y económicas.

Componentes de la biodiversidad

Como ya vimos, los componentes de la biodiversidad son dos: la naturaleza misma —lo tangible— y los conocimientos que tenemos de ella —lo intangible—.
El componente tangible de la biodiversidad está conformado por la variedad de genes, de especies y de ecosistemas que podemos identificar, manejar y usar. En otras palabras, lo conforman el material genético, las poblaciones naturales y los recursos de los ecosistemas que pueden ser evaluados físicamente.
Ejemplos de este componente son los árboles, peces comerciales y plantas medicinales.
El componente intangible de la biodiversidad, por otro lado, está constituido por la variedad de conocimientos, innovaciones y prácticas, individuales o colectivas relacionadas con la diversidad biológica. Dentro de este componente se incluyen los saberes de los pueblos indígenas y de las comunidades campesinas, así como las tecnologías modernas y las innovaciones científicas para usar los recursos.

Importancia de la biodiversidad

Existe una interdependencia muy estrecha entre todos los seres vivos y entre los factores de su hábitat, por lo tanto, una alteración entre unos seres vivos modifica también a su hábitat y a otros habitantes de ahí. La pérdida de la biodiversidad puede acarrear nuestra desaparición como especie.
La pérdida de la biodiversidad equivale a la pérdida de la calidad de nuestra vida como especie y, en caso extremo, nuestra propia extinción.

Razones que provocan pérdida de la biodiversidad

Todas las especies se han adaptado a su medio y si este cambiara simplemente perecerían.
El motivo de la desaparición de las especies es la alteración o desaparición de su hábitat.
La mayoría de las veces la alteración del medio la provoca el hombre: La tala inmoderada obliga a sus habitantes a emigrar o a morir.
La agricultura no planificada origina la desaparición de las especies que habitaban en esos renglones antes de ser desmontadas, al igual que la contaminación, la urbanización, la cacería y el tráfico de especies.

¿Cuál es el valor de la biodiversidad?

¿Cuánto vale la sombra de un árbol frondoso? ¿y los pensamientos que tenemos cuando cae la tarde sobre un bosque o cuando nos deleitamos con el mar? ¿Cuál es el valor de la biodiversidad?
Vivimos en una sociedad consumista donde la brecha entre ricos y pobres es cada día mayor y en la cual la naturaleza ha sido observada como un objeto que debe ser explotado. Bajo este modelo de desarrollo, cuyos objetivos son la acumulación de riqueza y el consumo, lo que "vale" es el dinero: vaya y pregunte cuál es el "valor" de algo y la respuesta será un precio.
Pero además de ser una fuente de ingresos económicos, la naturaleza tiene otros valores intrínsecos que son de todo tipo: ecológico, ético, cultural, científico, recreativo y estético. Por supuesto, dichos valores pueden ser analizados desde perspectivas distintas y sus implicaciones sobreponerse y complementarse.

Valor económico

Los ecosistemas, las especies y la información genética tienen un valor económico actual y potencial enorme.
Actividades de toda clase, desde la agricultura, la pesca y el ecoturismo, hasta la explotación maderera y petrolera, dependen de la existencia de la biodiversidad.
Tintes, fibras, alimentos, medicinas y variedades silvestres de especies cultivadas son apenas una parte del valor económico actual de la biodiversidad.
Pero además de ser una fuente de dinero a través de la pesca, de la empresa maderera y de la oferta turística, la biodiversidad tiene un gran valor potencial en la actualidad.
Algunas empresas de los países del Norte cuyas emisiones a la atmósfera, al suelo y al agua amenazan el equilibrio climático global, canjean dinero por conservación de bosques. Paradójicamente, la creciente pérdida de biodiversidad se debe al poco valor económico que se le asigna.

A modo de resumen:

La biodiversidad es toda la variedad de la vida en la Tierra. Puede abordarse de tres maneras: como variedad de ecosistemas, como variedad de especies y como variedad de genes.

Variedad de ecosistemas

Es la variedad de comunidades de organismos que existen en determinadas regiones; incluye la variedad de hábitats, de especies que los componen y de procesos ecológicos que ocurren.

Variedad de especies

Es el número de especies diferentes que hay en un área geográfica.

Variedad de genes

Son las diferentes versiones de los genes (unidades de herencia) contenidos en los individuos de todas las especies del planeta. Estas diferencias, que son heredables, constituyen la materia prima a partir de la cual ha evolucionado la variada complejidad de los seres vivos en el transcurso de millones de años.

Fuente Internet: 
http://www.monografias.com/trabajos11/bioltrece/bioltrece.shtml

¿Por que preocupa la perdida de biodiversidad?

La biodiversidad refleja el número, la variedad y la variabilidad de los organismos vivos y cómo éstos cambian de un lugar a otro y con el paso del tiempo. Incluye la diversidad dentro de las especies, entre especies distintas y entre ecosistemas, en definitiva, la diversidad del conjunto de la vida en la tierra.
Los ecosistemas proporcionan recursos indispensables para la vida, como son los alimentos y el agua y el aire puros. También ofrecen protección contra catástrofes naturales y enfermedades, condicionan la cultura del hombre y sus creencias espirituales, y aseguran la continuidad de los procesos fundamentales para la vida en el planeta.
La pérdida de biodiversidad afecta a los ecosistemas, ya que los hace más vulnerables a las perturbaciones y merma su capacidad de proporcionar servicios de gran valor para los hombres. El hombre tiene un impacto considerable, y creciente, sobre el entorno natural. En los últimos 50 años, los cambios en la biodiversidad se han producido a un ritmo nunca antes visto en la historia de la humanidad.

¿Como se mide en la actualidad la evolución de la biodiversidad? 
Los indicadores se establecieron con el fin de realizar un seguimiento del estado y la evolución de la biodiversidad, además de proporcionar información sobre cómo aumentar la eficacia de las medidas y los programas de gestión en materia de biodiversidad. Estos indicadores cubren siete ámbitos de actuación prioritarios, entre los que se incluyen la reducción del ritmo de pérdida de la biodiversidad, hacer frente a las principales amenazas, fomentar el uso sostenible de la biodiversidad y mantener los ecosistemas en buen estado.
Aunque siguen faltando mediciones completas a escala mundial que permitan evaluar el progreso hacia el objetivo para 2010, sí es posible identificar tendencias sobre el estado de la biodiversidad con la ayuda de dichos indicadores. En su conjunto, nos permiten detectar las tendencias actuales de algunos aspectos importantes de la biodiversidad, en particular cuando se analizan e interpretan como un todo.

¿A que ritmo desaparece la biodiversidad?
El primer ámbito de actuación prioritario dentro del esquema de trabajo para 2010 consiste en reducir el ritmo de pérdida de biodiversidad en términos de ecosistemas, especies y riqueza genética.
Durante los últimos 50 años, el hombre ha transformado los ecosistemas a un ritmo y con un alcance superiores a ningún otro periodo de la historia de la humanidad. Por ejemplo, la transformación de bosques en terrenos agrícolas y de pasto se sucede a un ritmo alarmante. En otros ecosistemas, tales como praderas, sabanas, desiertos y ecosistemas de agua dulce, costeros y marinos, se han observado tendencias negativas similares.
La abundancia y la distribución de las especies elegidas son un indicador de la calidad de los ecosistemas. Varios informes de evaluación han revelado que el tamaño de la población o la zona de distribución de la mayoría de las especies estudiadas están menguando. Entre las excepciones se encuentran las especies domésticas, especies invasoras y las que gozan de medidas de protección específicas.
Según los cálculos, el hombre es el responsable de haber provocado extinciones a un ritmo hasta mil veces superior al natural en los últimos siglos. Según la Lista Roja de Especies Amenazadas de la UICN, se encuentran amenazadas de extinción hasta la mitad de las especies de grupos estudiados en profundidad como anfibios, aves o mamíferos, y la situación está empeorando.
La diversidad genética de las especies cultivadas y domesticadas tiene una gran importancia para el hombre, ya que permite a las especies adaptarse a unas circunstancias cambiantes. Se calcula que un tercio de las razas de animales domesticados se encuentran en la actualidad en peligro de extinción. Entre las especies que no son de cultivo, la diversidad genética está amenazada principalmente por la sobreexplotación, así como por la destrucción y fragmentación de sus hábitats.
Los espacios protegidos son de vital importancia a la hora de contrarrestar la pérdida constante de ecosistemas y de especies. En la actualidad cubren de cerca la octava parte de la superficie terrestre del planeta, pero tan sólo una mínima parte de las zonas marítimas y costeras. Sin embargo, existen diferencias notables de extensión protegida entre las diferentes regiones ecológicas, y muchos tipos de ecosistemas apenas gozan de protección alguna.

¿Cuales son las principales amenazas para la biodiversidad?
El tercer ámbito de actuación prioritario gira en torno a las cinco mayores amenazas para la biodiversidad: especies exóticas invasoras, carga de nutrientes y contaminación, cambio climático, modificación del hábitat y sobreexplotación. La disponibilidad de abonos y su uso a escala industrial contribuyen al incremento de la productividad agrícola. Sin embargo, el nitrógeno y el fósforo contenidos en dichos abonos pueden traer graves consecuencias para el medio ambiente. La producción industrial de nitrógeno se ha disparado desde 1960. Las especies exóticas invasoras pueden tener efectos devastadores para las especies autóctonas, como provocar su extinción o causar daños a los ecosistemas naturales o de cultivo. Algunas plagas de enfermedades o especies exóticas invasoras pueden acarrear ingentes esfuerzos económicos. En el pasado reciente, el ritmo de introducción de especies exóticas ha aumentado considerablemente junto a los riesgos aparejados, sobre todo a causa del crecimiento del comercio, los viajes y el turismo.

¿Cómo puede la Biotecnología contribuir al mantenimiento de la biodiversidad?

La biotecnología contribuye al mantenimiento de la biodiversidad mediante el desarrollo de distintas herramientas. En primer lugar desarrollando herramientas para analizar la diversidad de los ecosistemas lo que permite realizar un seguimiento de la aparición o desaparición de las especies. En segundo lugar desarrollando procesos para conservar los genomas en bancos o colecciones de organismos vivos o en forma de ADN. En tercer lugar desarrollando las técnicas de clonación que pueden ser muy útiles para recuperar especies en peligro de extinción. En sentido literal los procesos de recombinación que se realizan mediante técnicas de Ingeniería Genética contribuyen a incrementar la biodiversidad en la misma medida que lo hacen los procesos naturales de recombinación. La creación de un organismo transgénico lleva implícita la formación de un nuevo organismo con características distintas al organismo parental. Las técnicas de recombinación y mutación in vitro que se aplican para la obtención de nuevos genes, y por consiguiente de nuevas proteínas o enzimas útiles para distintos fines, son también formas de aumentar la diversidad.

La gran diversidad de seres vivos existente constituye una inmensa oferta de nuevos productos y/o procesos de potencial aplicación a la resolución de problemas concretos mediante el empleo de la Biotecnología. Entre las aplicaciones de especial relevancia social se encuentra la búsqueda de productos con actividades farmacológicas específicas, bien contra enfermedades infecciosas no tratables o emergentes (SIDA, tuberculosis), o bien frente a enfermedades fisiológicas (cardiovasculares, cáncer). En este sentido, la mayoría de los fármacos que se encuentran actualmente comercializados se obtuvieron originalmente a partir de unos pocos microorganismos y plantas, que sin duda constituyen sólo una mínima fracción del total de seres vivos presentes en el planeta. En otros ámbitos, tales como la industria, se encuentra muy extendida la utilización de sustancias naturales en distintos productos comerciales, o como catalizadores biológicos que se emplean en procesos de bioconversión (biotransformación), altamente específicos y poco contaminantes. La diversidad microbiana constituye tal vez la fuente potencial de recursos más importante para el desarrollo biotecnológico. El potencial biológico industrialmente explotable es enorme debido a la gran diversidad de especies de microorganismos existente en la biosfera, la mayoría de los cuales son aún desconocidos.
Este potencial se ve incrementado por las técnicas de Ingeniería Genética que permiten aumentar la diversidad de los productos que se obtienen de los organismos iniciales.

¿Cómo se puede analizar la biodiversidad con las modernas técnicas biotecnológicas?

La diversidad de los ecosistemas se analiza mediante técnicas taxonómicas clásicas y moleculares. En general, la diversidad de los ecosistemas es difícil de medir, porque éstos cambian continuamente y no tienen límites espaciales o temporales claramente definidos. Las posibilidades de estimación y análisis de la diversidad genética y de especies se han visto muy favorecidas por el empleo de las modernas técnicas de la Biología Molecular.
El objetivo de estas técnicas es detectar y cuantificar los caracteres heredables del genoma como complemento de otros caracteres macroscópicos (morfológicos o fisiológicos) más fácilmente observables. Con estas técnicas se puede detectar la variabilidad que no se observa a simple vista (variabilidad oculta). Para analizar la diversidad entre individuos de una misma población (o entre poblaciones de una misma especie) se seleccionan primero unas regiones específicas del genoma (marcadores genéticos) que proporcionan una huella genética ("fingerprinting") y que permiten detectar diferencias incluso entre individuos muy estrechamente emparentados.

¿Qué son los microcosmos y la microbiota?

La microbiota es el conjunto de microorganismos que habitan en un ecosistema y constituyen lo que se denomina el microcosmos (mundo microscópico) del ecosistema.
Hasta hace relativamente poco, sólo se podía hablar con propiedad de la diversidad macroscópica de un ecosistema. La introducción de técnicas de ecología molecular ha permitido penetrar en el complejo y difícil mundo de la diversidad microscópica, fundamental para el mantenimiento del ecosistema. Los microorganismos constituyen el 10% del total de las 1,8 millones de especies descritas en la biosfera (7700 especies de bacterias, 70000 especies de hongos, 40000 especies de algas y otros tantos de protozoos). Sin embargo, el estudio de la presencia de microorganismos por técnicas moleculares sugiere que el número de especies no descritas puede ser de al menos 10 millones en el caso de bacterias, o 150.000 en hongos. Existen aún numerosos ambientes naturales que se encuentran poco o nada estudiados, en los que se desarrollan microorganismos con capacidades metabólicas nuevas y potencialmente interesantes para el hombre. Es el caso de ambientes marinos como los sedimentos de las profundidades oceánicas, así como de las comunidades microbianas criptoendolíticas (viven dentro de las piedras), o de las asociaciones en forma de micorrizas (hongos y plantas).
También se están descubriendo microorganismos completamente nuevos en lugares tan conocidos como los fangos que se generan en el fondo de las depuradoras de aguas residuales, denominados lodos activos por la gran cantidad de organismos que contienen y que son muy activos para eliminar los contaminantes.

¿Qué se entiende por biodiversidad?

El termino biodiversidad proviene de la contracción de las palabras Biología (estudio de la vida) y diversidad (variedad), y por tanto se refiere a la diversidad de la vida. La biodiversidad es la suma de los distintos seres vivos que constituyen un ecosistema. El término biodiversidad se acuñó en 1986, con motivo de un congreso celebrado en Washington DC (EEUU), y aunque a menudo se ha empleado de forma restringida para aludir al número y variedad de organismos (especies) que viven en el planeta, es más aceptado el criterio de aplicarlo a todos los posibles niveles de organización que existen en la naturaleza. Según esto, se reconocen explícitamente tres niveles. El primero –la diversidad genética— alude a la variedad de genes contenidos en individuos, poblaciones, especies, etc. El segundo –diversidad de especies— alude al número y variedad de especies que se pueden encontrar, por ejemplo, en un área determinada. El tercero –diversidad de ecosistemas— designa el número y abundancia relativa de hábitats, comunidades bióticas y procesos ecológicos.

miércoles, 29 de agosto de 2012

Degradación del suelo

1. La problemática de la utilización del suelo. Concepto de degradación
Como se ha expuesto en los temas anteriores, el suelo es un ente de la Naturaleza, cuyas características son el resultado de una larga evolución hasta alcanzar un equilibrio con las condiciones naturales. Y hemos de tener claro que en esas condiciones ambientales no está incluida la acción de las civilizaciones humanas. El suelo es un componente del medio natural y como tal debe ser considerado como un suelo virgen, no explotado. Es evidente que su continua y abusiva utilización por parte del hombre ha truncado su evolución y ha condicionado negativamente sus propiedades. Como resultado el suelo se deteriora, se degrada.
Se considera como degradación del suelo a toda modificación que conduzca al deterioro del suelo.
Según la FAO - UNESCO la degradación es el proceso que rebaja la capacidad actual y potencial del suelo para producir, cuantitativa y cualitativamente, bienes y servicios.
La degradación del suelo es la consecuencia directa de la utilización del suelo por el hombre. Bien como resultado de actuaciones directas, como agrícola, forestal, ganadera, agroquímicos y riego, o por acciones indirectas, como son las actividades industriales, eliminación de residuos, transporte, etc.
Actualmente existe una fuerte tendencia que clama por una utilización racional del suelo. Sus principios se agrupan en lo que se conoce por Conservación de Suelos. Las teorías conservacionistas persiguen obtener máximos rendimientos pero con mínima degradación.
El cuidado del suelo es esencial para la supervivencia de la raza humana. El suelo produce la mayor parte de los alimentos necesarios, fibras y madera. Y sin embargo, en muchas partes del mundo, el suelo ha quedado tan dañado por un manejo abusivo y erróneo que nunca más podrá producir bienes (FAO, 1976).
2. Tipos de degradaciones
Dentro del amplio concepto de degradación se distinguen una serie de degradaciones diferentes. 
2.1 Degradación de la fertilidad Es la disminución de la capacidad del suelo para soportar vida. Se producen modificaciones en sus propiedades físicas, químicas, fisicoquímicas y biológicas que conllevan a su deterioro.
Al degradarse el suelo pierde capacidad de producción y cada vez hay que añadirle más cantidad de abonos para producir siempre cosechas muy inferiores a las que produciría el suelo si no se presentase degradado.
Puede tratarse de una degradación química, que se puede deber a varias causas: pérdida de nutrientes, acidificación, salinización, sodificación, aumento de la toxicidad por liberación o concentración de determinados elementos químicos. El deterioro del suelo a veces es consecuencia de una degradación física, por: pérdida de estructura, aumento de la densidad aparente, disminución de la permeabilidad, disminución de la capacidad de retención de agua. En otras ocasiones se habla de degradación biológica, cuando se produce una disminución de la materia orgánica incorporada.
2.2 Erosión La erosión es la pérdida selectiva de materiales del suelo. Por la acción del agua o del viento los materiales de las capas superficiales van siendo arrastrados. Si el agente es el agua se habla de erosión hídrica y para el caso del viento se denomina erosión eólica.
El concepto de erosión del suelo se refiere a la erosión antrópica, que es de desarrollo rápido. Frente a ella está la erosión natural o geológica, de evolución muy lenta.
La erosión geológica se ha desarrollado desde siempre en la Tierra, es la responsable del modelado de los continentes y sus efectos se compensan en el suelo, ya que actúan con la suficiente lentitud como para que sus consecuencias sean contrarrestadas por la velocidad de formación del suelo. Así en los suelos de las superficies estables se reproduce el suelo, como mínimo, a la misma velocidad con que se erosiona.
Es más, es muy importante destacar que la erosión natural es un fenómeno muy beneficioso para la fertilidad de los suelos.
Efectivamente, como es sabido, todas las propiedades del suelo, y por tanto su profundidad, son consecuencia de una determinada combinación de los factores formadores. En una determinada región aparecerá un suelo cuya profundidad será el resultado de un clima concreto (temperatura y precipitaciones), sometido a la actividad de unos determinados organismos, en un tipo de relieve, que actúan sobre una clase de roca durante un tiempo. Si no actuase la erosión natural esa profundidad de material edafizado se iría alterándose progresivamente cada vez más conforme el suelo se fuese volviendo más antiguo y llegaría un momento que todos los minerales originales se habrían transformado totalmente, ya no aportarían ningún nutriente nuevo al suelo y este quedaría constituido por un residuo totalmente infértil. Prácticamente toda la Tierra estaría recubierta de una capa inerte, sin posibilidad de soportar vida alguna.
Afortunadamente este panorama aterrador no se presenta precisamente debido a la erosión geológica. Esta lenta erosión va decapitando lentamente las capas superiores de los suelos con lo que va disminuyendo el espesor del suelo y este se va progresivamente profundizando hacia capas más internas donde se encuentra el material original sin transformar (para mantener su profundidad de equilibrio con las condiciones ambientales). Así, de esta manera se van incorporando continuamente nuevos materiales al suelo (materiales frescos, no alterados, con abundantes minerales que al alterarse aportan nutrientes a los suelos). El tipo de suelo será siempre el mismo (mientras no se produzca un cambio en las condiciones ambientales) pero, ¡se irá desplazando con el tiempo!. Hacia el interior de la tierra en los relieves planos y caminando lateralmente en los relieves colinados (los valles se van ensanchando).
2.3 Contaminación Por último, el suelo se puede degradar al acumularse en él sustancias a unos niveles tales que repercuten negativamente en el comportamiento de los suelos.
La FAO define la contaminación como una forma de degradación química que provoca la pérdida parcial o total de la productividad del suelo.
El diccionario de la Real Academia define la contaminación como la alteración de la pureza de alguna cosa, como los alimentos, el agua, el aire, etc.

La acumulación de sustancias tóxicas para los organismos suele producirse de una manera artificial, como consecuencia de las actividades humanas, pero también puede ocurrir de manera natural, la edafización libera sustancias contenidas en las rocas (heredadas o neoformadas) que se concentran en el suelo alcanzando niveles tóxicos.
3. Consecuencias de la degradación
La degradación tiene importantes consecuencias. Veamos las referidas al suelo en sí mismo y dejaremos las medioambientales y socioeconómicas para otras disciplinas (avalanchas, inundaciones, empobrecimientos, migraciones, etc).
Pérdida de elementos nutrientes (N, P, S, K, Ca, Mg...). Puede ser de manera directa, bien al ser eliminados por las aguas que se infiltran en el suelo o bien por erosión a través de las aguas de escorrentía, o de una forma indirecta, por erosión de los materiales que los contienen o que podrían fijarlos.
Modificación de las propiedades fisicoquímicas: acidificación, desbasificación y bloqueo de los oligoelementos que quedan en posición no disponible.
Deterioro de la estructura. La compactación del suelo produce una disminución de la porosidad, que origina una reducción del drenaje y una pérdida de la estabilidad: como consecuencia se produce un encostramiento superficial y por tanto aumenta la escorrentía.
Disminución de la capacidad de retención de agua: por degradación de la estructura o por pérdida de suelo. Esta consecuencia es especialmente importante para los suelos andaluces sometidos a escasas precipitaciones anuales.
Pérdida física de materiales: erosión selectiva (parcial, de los constituyentes más lábiles, como los limos) o masiva (pérdida de la capa superficial del suelo, o en los casos extremos de la totalidad del suelo).
Incremento de la toxicidad. Al modificarse las propiedades del suelo se produce una liberación de sustancias nocivas.
En definitiva, se produce un empeoramiento de las propiedades del suelo y una disminución de la masa de suelo. Estos efectos tienen dos consecuencias generales: a corto plazo, disminución de la producción y aumento de los gastos de explotación (cada vez el suelo necesita mayor cantidad de abonos y cada vez produce menos). A largo plazo: infertilidad total, abandono, desertización del territorio.
Importancia de la degradación del suelo y estado actual
La importancia de la degradación se deduce de la importancia del objeto que deteriora. La FAO-UNESCO-PNUMA han puesto de la relieve la extrema gravedad de este problema en numerosas ocasiones y como resultado de la 1ª Conferencia de las Naciones Unidas sobre Desertificación, celebrada en Nairobi en 1977 elaboró la Carta mundial de los suelos (http://edafologia.ugr.es/conta/tema10/recursos/cartams.htm)
A modo de resumen podemos destacar los siguientes hechos.
El suelo es un componente esencial del medio ambiente en el que se desarrolla la vida.
El suelo es frágil, de difícil y larga recuperación (tarda desde miles a cientos de miles de años en formarse), y de extensión limitada, por lo que se considera como recurso no renovable. Un uso inadecuado puede provocar su pérdida irreparable en tan sólo algunos años.
Se usa para fines muy diversos: agricultura, ganadería, pastos y montes, extracción de minerales y de materiales para la construcción, soporte para las construcciones, eliminación de residuos, para actividades de ocio y recreo.
El problema de la degradación del suelo no es un descubrimiento de nuestra civilización, pues ya quedaba registrado en los documentos de los romanos y de los griegos: Así ya Platón describía la destrucción del suelo como resultado de las deforestaciones.
No obstante en un principio el problema no era acuciante debido a la escasa densidad de población y al hecho de que las civilizaciones primitivas se establecían en las llanuras próximas a los ríos (suelos fértiles, con abundante agua y fáciles comunicaciones). La espectacular explosión demográfica actual ha provocado la roturación de tierras en relieves cada vez con pendientes más fuertes, fuertemente degradables, y como consecuencia frenar la degradación del suelo se ha convertido en uno de los grandes retos de nuestra civilización.

El suelo: erosión

La erosión de los suelos es un proceso natural producto de la acción de los agentes atmosféricos, aunque esta acción se ve fortalecida por las actividades humanas.
España es un ejemplo de ese proceso desértico, con una cuarta parte de la superficie bajo sus efectos, que provoca anualmente un millón de toneladas de pérdida de suelo vegetal, causado mayormente por las características físicas de gran parte del territorio, de marcada orografía y grandes extensiones de suelos arcillosos, los cuales son fácilmente erosionables por la acción de las lluvias, apoyados por el clima mediterráneo cuyos aguaceros se concentran fuertemente y en poco tiempo.
Los agentes causantes de la erosión
Durante el proceso de erosión se arranca y transporta las capas superficiales de la tierra vegetal. Los agentes externos causantes de la erosión y modelación de la corteza terrestre son esencialmente: la  intemperie; el viento (erosión eólica); las aguas superficiales (erosiones pluvial y fluvial); las aguas subterráneas; los glaciares; el mar y los organismos litófagos.
Erosión eólica
La erosión eólica es llevada a cabo por el viento y es cuantitativamente menos importante que las demás; está condicionada a la ausencia de vegetación y a la presencia de partículas sueltas en la superficie.
 La deflación se produce cuando el viento levanta los fragmentos sueltos del suelo; la abrasión tiene lugar cuando dichos fragmentos chocan con la superficie de las rocas y las desgastan; en las rocas de consistencia heterogénea la erosión avanza más rápidamente en las zonas más blandas, produciendo una superficie denominada alveolar.
Erosión fluvial
La erosión fluvial es la que llevan a cabo los cursos de agua continentales (ríos y torrentes); la energía cinética del agua determina la intensidad de la erosión y depende de la energía potencial, que se debe a la diferencia de altura entre la zona donde discurre y el nivel del mar (nivel de base).
La energía cinética no es uniforme a lo largo del curso del río y es mayor en el tramo alto, de mayor pendiente, y menor en la desembocadura; ello determina una erosión diferencial que modifica el perfil longitudinal del curso del río, evolucionando hacia un modelo teórico, el denominado perfil de equilibrio, en el que cada punto del mismo recibe por sedimentación la misma cantidad de materiales que pierde por erosión. Los cambios de nivel de base (transgresiones y regresiones marinas) determinan un nuevo perfil de equilibrio.
Erosión glaciar
La  erosión glaciar se debe a la acción de los glaciares sobre las rocas de la superficie; la erosión es mucho más intensa en el fondo de la masa de hielo que en los costados, lo que determina el típico modelado de los valles glaciares en forma de U.
Este tipo de erosión se debe en parte a la abrasión producida en la roca del fondo por los fragmentos que engloba el hielo, separados de la primera por una fina película de agua; pero también interviene un mecanismo distinto, mediante el cual el hielo pegado a la roca, sin agua fundida que los separe, arranca fragmentos de la misma. Estructuras características que resultan de la erosión glaciar son los circos glaciares, los valles colgados y los lagos de origen glaciar.
Erosión marina
La erosión marina es la que lleva a cabo el mar sobre las rocas del litoral; la acción principal se debe al movimiento de las olas, cuya energía procede de la energía cinética del viento. Las mareas tienen una actividad erosiva menos importante pero por otra parte aumentan el área de actuación del oleaje al modificar periódicamente el nivel del mar.
La erosión que llevan a cabo las olas se debe en parte al choque del agua contra las rocas y también a la abrasión que ejercen los fragmentos que arrastra el agua y que proceden de la misma roca erosionada. Las formas erosivas más características son los acantilados y las plataformas de abrasión.


Las actividades culturales humanas favorecen la acción de los agentes naturales de la erosión
Pero no son estos los únicos agentes y factores causantes de la erosión, el hombre con sus actos de tipo cultural y económico, ha fortalecido la acción de los agentes naturales. En gran parte del planeta se realizan prácticas agrícolas que contribuyen a la erosión de los terrenos.
La repoblación masiva de especies de crecimiento rápido en base al interés económico que ello representa, como son los eucaliptos, contribuyen a la decadencia de los suelos por su corto arraigo y mínimo aporte, ya que el tiempo es parte fundamental para su formación, además de ser especies de fácil combustión. Todo ello en detrimento de las especies de frondosas de hoja perenne o caduca, buenas formadoras de suelos.

Ecosistema del suelo

El suelo debe ser estudiado también como un ecosistema, aunque restringido, dentro de otro más general. Existen factores edáficos, es decir, propiedades físicas y químicas del suelo, que tienen una acción sobre los seres vivos que lo habitan. Las características físicas se refieren a profundidad, inclinación, composición, etc. Por su parte, las características químicas están referidas a las materias circulantes por ese medio, tales como agua, gases, sustancias minerales y orgánicas.
En el biotopo del suelo, para que se desarrolle como tal, se dan una serie de condiciones que van en función de los factores climáticos del lugar, aunque modificados por las características especiales del propio biotopo. Por ejemplo, a pocos metros de la superficie desaparecen las variaciones climáticas estacionales; conforme se profundiza se reduce la temperatura y con sólo medio metro también desaparecen las variaciones noche/día.


Las especies que huyen de la luz encuentran en este hábitat un refugio ideal. En cuanto al oxígeno, éste desciende progresivamente conforme se avanza en profundidad, aumentando a su vez el dióxido de carbono, algunas bacterias habitan esas zonas del suelo donde se produce la anaerobiosis (carencia de oxígeno).
Las comunidades edáficas, es decir, los habitantes de los suelos, tienen representantes de todos los reinos de seres vivos. Un nivel del suelo llamado rizosfera, está colonizado por los órganos subterráneos de las plantas. Bacterias, hongos y protistas fotosintéticos (algas unicelulares) constituye la microflora edáfica.
Las bacterias pueden suponer una densidad de varios miles de millones por gramo de suelo, muy superior a la de los hongos que pueden representar unos cuantos cientos de miles. En cuanto a los protistas heterótrofos (protozoos) son los representantes de menor entidad en la micro fauna edáfica.
Los invertebrados tienen amplia representación en la fauna hipogea , anélidos, rotíferos, nemátodos, insectos (colémbolos, isópteros, coleópteros, ortópteros, himenópteros), arácnidos (ácaros, arañas), miriápodos (ciempiés y milpiés) y moluscos (caracoles y babosas). Todos ellos colaboran en el cierre del ciclo de la materia, transformando las características físicas del suelo, descomponiéndolo, mineralizando la materia orgánica, y disponiéndola para ser absorbida por los vegetales.
Por su parte, entre los vertebrados habitantes del suelo se encuentran presentes los animales excavadores: topos, conejos y diferentes especies de roedores. Estos animales influyen favorablemente en el sustrato realizando excavaciones y galerías.

Suelos

¿Qué es el suelo?
La palabra suelo se deriva del latín Solum, que significa tierra suelo o parcela. Los suelos se forman por la combinación de 5 factores interactivos:
  • Clima
  • Material parental
  • Topografía
  • Organismos vivos
  • Tiempo
Los suelos se forman de 4 grandes componentes:

45% materia mineral
5% materia orgánica
25% agua
25% aire
El suelo o capa superficial de la tierra, es una formación de materias minerales y orgánicas producidas por la acción geológica continuada, combinación de agentes atmosféricos como el viento o el agua, y los procesos de descomposición llevados a cabo por los microorganismos.
Química del suelo
El suelo es, químicamente, un complejo laboratorio de la naturaleza. En él se producen numerosas reacciones químicas, muchas de ellas difíciles de explicar, y otras más simples cuyos procesos pueden ser estudiados y comprendidos.
Básicamente, los suelos están compuestos de partículas minerales llamadas silicatos, los cuales constituyen los productos fundamentales de la corteza terrestre (el 95%), pues se encuentran formando parte de muchas rocas y minerales.
Cuando hablamos de la arena, arcilla, caliza, etc., nos estamos refiriendo en realidad a diferentes formas de silicatos. Los silicatos más importantes son los de sodio y potasio (vidrios solubles), los que componen el vidrio y el cristal (calcio), los del aluminio (arcilla o caolín), los del magnesio (talco), etc.
Por su parte, el suelo alberga muchos nutrientes importantes para el crecimiento de las plantas, tales como nitrógeno, fósforo, potasio, hierro, magnesio, azufre y calcio. De todos ellos, hay tres elementos principales y fundamentales, el nitrógeno, fósforo y potasio, que deben encontrarse en los suelos en formas asimilables por los vegetales, y sin los cuales no pueden desarrollarse.
Además de los citados, existen otros elementos llamados oligoelementos que, aunque también son fundamentales para las plantas, sólo los necesitan en muy pequeñas cantidades, como son el boro, cobre, cinc y manganeso; suelen encontrarse en cantidades suficientes en los suelos pero la falta de alguno de ellos puede resultar grave para la plantas.
Los coloides
Los coloides son unas partículas microscópicas de óxidos hidratados de determinados minerales, como hierro, aluminio, silicio, etc., que se mueven con el agua y son fundamentales para que las plantas puedan obtener los nutrientes del suelo. Su textura es parecida a la arcilla y no se disuelven en el agua, sino que se mezclan y dispersan con ella. Los coloides se forman por meteorización física y química de los minerales primarios (véase más adelante el apartado: componentes primarios de los suelos). Son apropiados como catalizadores por ser muy absorbentes, debido a su gran superficie.
En la agricultura tiene especial importancia las propiedades físicas de los coloides. La lixiviación, que es la separación de una sustancia soluble de otra insoluble por medio del agua, es un efecto indeseable en las tierras de cultivo, pues los coloides de compuestos originales del suelo, como calcio, potasio, sodio, etc., pueden ser lavados y desplazados, dejando un terreno ausente de nutrientes para las plantas.
En las regiones donde las precipitaciones son escasas y con pocos acuíferos subterráneos, los suelos conservan más fácilmente los nutrientes, al existir una escasa lixiviación. Por su parte, donde las aguas son torrenciales, o se riega por anegación del suelo, la capacidad de lixiviación del terreno se incrementa notablemente. Los riegos por aspersión o goteo son, en estos casos, los más aconsejables para evitar el movimiento de los coloides a través de los canales o láminas de agua formados por las escorrentías.
Intercambio de bases
El intercambio de bases es una reacción química muy importante en los coloides. Básicamente, el proceso consiste en que un elemento mineral que forma parte de un compuesto, puede liberarse de éste al entrar en contacto con el agua (se disuelve en el líquido), y de esta forma queda a disposición de las plantas para ser asimilado como un nutriente.
Cuando añadimos al suelo un fertilizante o un elemento mineral necesario, estamos favoreciendo el intercambio de bases. Por ejemplo, una actividad agrícola muy común en los terrenos ácidos (que tienen un exceso de concentración de iones de hidrógeno) es corregirlos añadiendo caliza, en esa operación la caliza reacciona con el hidrógeno y lo neutraliza; esto es necesario si deseamos cultivar la gran mayoría de plantas, como las legumbres, ya que los suelos ácidos son inviables para su normal desarrollo.
Otro ejemplo de intercambio de bases es el que sucede cuando incorporamos al suelo un fertilizante tan importante como es el potasio; parte de él se disolverá en la solución del suelo con el agua de riego o de lluvia, quedando de esta forma a disposición de las plantas para su asimilación como nutrientes, mientras que otra parte participará en el intercambio de bases y se incorporará a los coloides permaneciendo en los suelos como reserva.
Componentes primarios de los suelos
Además de los distintos minerales o nutrientes solubles de los suelos que son asimilables por las plantas por disolución en el agua, se distinguen una serie de componentes primarios.
Se pueden clasificar éstos en los siguientes:

Materia inorgánica
Los compuestos inorgánicos de los suelos no pueden ser absorbidos por las plantas al encontrarse en estado mineral (no disueltos), y son por lo tanto químicamente inactivas en términos de nutrientes para los vegetales. Resultan de la meteorización de la roca madre y rocas superficiales de la corteza terrestre. Constan de partículas de tamaños variados, que oscilan entre arenillas de 0,025 mm. y gravas o piedras de varios centímetros de diámetro.
La naturaleza física de las partículas inorgánicas del suelo determina su capacidad para retener o almacenar el agua, elemento éste que es vital para que las plantas puedan desarrollarse con normalidad. Algunas partículas inorgánicas muy pequeñas, como las que forman parte de las arcillas, aunque no aportan nutrientes por si mismas, si funcionan como almacén de muchos nutrientes que se van acumulando entre ellas, y que las raíces de las plantas pueden asimilar.
Materia orgánica
La materia orgánica del suelo es un factor muy importante para el desarrollo de las plantas. En las asociaciones vegetales climácicas (estables), son autosuficientes gracias a la constante absorción por los suelos de los restos de materia vegetal en descomposición (además de pequeños animales del suelo), que se va renovando con los propios vegetales del entorno en un ciclo ecológico indefinido. Por esta misma razón, se entiende el porqué la fracción del suelo correspondiente a la materia orgánica en los suelos de turba (origen del carbón) llega alcanzar el 95%; en las regiones húmedas entre el 2 y 5%, y en los suelos áridos o desérticos de tan solo 0,5%.
La materia orgánica de los suelos puede ser viva, como microorganismos o animales edáficos (típicos del suelo), o muerta en descomposición de procedencia animal o vegetal; la consolidación de estas materias forman lo que se denomina humus. El humus es una mezcla de sustancias dinámica, es decir, en constante cambio.
En el proceso de descomposición entran numerosas bacterias y hongos microscópicos, que digieren los compuestos orgánicos más complejos de la materia transformándolos en otros más simples que pueden ser fácilmente absorbidos por las raíces de las plantas. Algunas bacterias tienen la capacidad de fijar el nitrógeno del aire en el suelo, poniendo también este elemento a disposición de las plantas.
El humus se mantiene en equilibrio en los terrenos naturales, como los bosques y tierras salvajes, sin embargo en las tierras donde se practica la agricultura o se perturba los procesos naturales de sucesión vegetal, éste se paraliza o se altera gravemente perdiendo el suelo la capacidad de mantener la fertilidad, lo que obliga a una fertilización artificial.
Gases
Los principales gases del suelo son el oxígeno, nitrógeno y dióxido de carbono. El oxígeno es vital para el crecimiento de las plantas, las raíces lo absorben y utilizan en los procesos metabólicos. Además, el oxígeno también es necesario para que variados microorganismos y bacterias puedan realizar la descomposición de la materia orgánica, y cuyos nutrientes podrán ser asimilados después por los vegetales.
Por su parte, el nitrógeno es un gas que se encuentra en los suelos combinado con la materia orgánica, y aunque constituye alrededor del 71% de la atmósfera terrestre, en esta forma no puede ser asimilado por las plantas. Para ello, es necesario que se produzca en el suelo lo que se denomina nitrificación, consistente en un fenómeno por el cual los restos de la materia orgánica nitrogenada de los suelos (humus) o de la atmósfera, es convertida en nitratos por parte de determinadas bacterias; los nitratos ya pueden entonces ser asimilados por los vegetales. Todo ello forma parte de un ciclo, el denominado ciclo del nitrógeno, en el cual el nitrógeno pasa de la atmósfera al suelo, de ahí a los seres vivos, y posteriormente de nuevo a la atmósfera para repetir el ciclo.
Algunas plantas, como las leguminosas (ejemplo del guisante), son capaces de realizar el proceso de nitrificación y dejar nitratos en el suelo que podrán ser aprovechados no sólo por las propias plantas, sino también por otro tipo de cultivos posteriores que lo precisen. Podemos decir, pues, que las leguminosas son capaces de "fertilizar" la tierra por si mismas.
Líquidos
La denominada solución del suelo, o componente líquido de los suelos, es fundamentalmente agua con añadido de diversas sustancias en disolución, tales como oxígeno y dióxido de carbono.
El contenido de la solución del suelo es primordial para el desarrollo de las plantas, pues sólo a través de ese líquido pueden las raíces asimilar los nutrientes contenidos en él. Se trata de una fórmula compleja, en la cual debe mantenerse el equilibrio en nutrientes de la solución para poder decir que un suelo es fértil; cuando las plantas no encuentran en esa solución los elementos que necesitan para desarrollarse, se dice que el suelo es estéril.
Textura y perfil del suelo
El perfil del suelo es el conjunto de las capas o estratos denominados horizontes en que se divide la estructura vertical del suelo. En el caso de las tierras agrícolas que nos interesa estudiar, el perfil del suelo útil abarca solamente hasta aquélla capa u horizonte que ya no puede ser alcanzada por las raíces de las plantas.
El perfil del suelo que colonizará las raíces de nuestras plantas, está compuesto por una serie de elementos y partículas minerales de diferentes tamaños y propiedades.
La textura del suelo es la relación existente entre las partículas minerales que lo componen y el tamaño de éstas. Depende, por tanto, de la proporción de sus componentes inorgánicos: arena, limo y arcilla. La textura es fundamental en la capacidad impermeabilizante y de retención del agua, así como del mayor o menor rendimiento del sistema radicular de las plantas para asimilar los nutrientes de la solución del suelo.
La textura de los suelos puede ser modificada mediante adecuadas labores agrícolas. Se distinguen en la textura del suelo cuatro categorías principales de acuerdo con el tamaño de los granos minerales que contiene: arena gruesa, entre 0,2 y 2 mm.; arena fina, entre 0,02 y 0,2 mm.; limo, entre 0,002 y 0,02 mm.; y arcilla, cuando los granos son inferiores a 0,002 mm.
Saber cómo es la textura del suelo es importante para el agricultor. De su conocimiento en cuanto a componentes minerales y orgánicos, drenaje, aireación, etc., dependerá el éxito en la producción de las cosechas.
No se puede decir que exista una textura de suelo ideal, pues cada especie puede requerir tipos de suelo muy distintos; unas precisarán buenos drenajes, como los cereales; y otras no podrán crecer sin suelos muy húmedos, como la caña de azúcar. Las condiciones adecuadas para cada una pueden conseguirse mediante trabajos de acondicionamiento.
Por ejemplo, en un suelo excesivamente arcilloso las plantas tendrán más capacidad de asimilación de los nutrientes, pero será sin embargo demasiado impermeable y encharcará el agua o lo mantendrá demasiado húmedo; para determinadas plantas de secano es un suelo inviable y sería necesario facilitar el drenaje añadiendo arena.
En el caso contrario, un suelo esencialmente de arena gruesa tendrá un mínimo grado de retención del agua, y la asimilación de los nutrientes por las raíces de las plantas será mínimo o nulo; en la práctica es un suelo estéril.
Texturas características
Existe una clasificación internacionalmente aceptada sobre las texturas más características de los suelos, en base a la proporción de las partículas que contienen.
Se distinguen las siguientes:
Arenosa
Es una textura arenosa cuando contiene menos del 15% de arcilla. La característica principal de este tipo de textura es su gran porosidad, cuyo efecto inmediato es la percolación, es decir, la filtración de las aguas de lluvia o riego hasta la capa freática (capa impermeable en que el agua se acumula y no profundiza más). Otra característica poco deseable y citada anteriormente es su poca fertilidad, motivada porque la solución del suelo lleva consigo los nutrientes disueltos, impidiendo que las raíces puedan asimilarlos.
En los suelos de arena fina se dan habitualmente los fenómenos de "costra" en la superficie. Estos suelos pueden ser corregidos añadiendo arcilla y tierra de bosque hasta conseguir una retención de agua adecuada al tipo de plantas que se deseen cultivar.
Entre las texturas arenosas se distinguen:
- Arenosa gruesa
Con un máximo del 15% de limo y arcilla, y más del 45% de arena gruesa.
- Arenosa fina
Con menos del 15% de limo y arcilla, y máximo del 45% de arena gruesa.
Franca
Es una textura franca cuando contiene menos del 25% de arcilla. Se trata de los suelos más adecuados en términos generales para la práctica de la agricultura.
De todas formas, la textura franca agrupa variadas composiciones entre un extremo y otro de este tipo, según contenga más o menos arena, arcilla o limo y, por tanto, puede ser más o menos adecuada dependiendo de la especie vegetal de que se trate. En estos casos debe atenderse a las características del tipo de especie que deseamos cultivar para conocer que tipo de suelo franco es el más adecuado.
Entre las texturas francas se distinguen:
- Franco-arenosa gruesa
Con un máximo del 15% de arcilla, de 15 al 35% entre limo y arcilla, y más del 45% de arena gruesa.
- Franco-arenosa fina
Con un máximo del 15% de arcilla, de 15 al 35% entre limo y arcilla, y menos del 45% de arena gruesa.
- Franca
Con un máximo del 15% de arcilla, y más del 35% entre limo y arcilla (la cantidad de limo no debe superar el 45% de la composición total).
- Franco-limosa
Con un máximo del 15% de arcilla, y más del 35% entre limo y arcilla (la cantidad de limo debe ser superior al 45% de la composición total).
- Franco-arcillo-arenosa
Con un 15% a 25% de arcilla, más del 55% de arena, y menos menos del 25% de limo.
- Franco-arcillosa
Con un 20 a 45% de limo, y entre 15 y 25% de arcilla.
- Franco-arcillo-limosa
Con mas del 45% de limo, y entre 15 y 25% de arcilla.
Arcillosa
Es una textura arcillosa cuando el contenido en arcilla es superior al 25%. Las partículas de arcilla son visibles sólo al microscopio, y al mojarlas forman una masa viscosa que puede moldearse. Se trata de los suelos menos porosos, pues pueden contener gránulos de tamaño inferior incluso a los 0,002 mm. Esto significa una capacidad impermeable o de retención del agua muy alta, provocando encharcamientos.
Los suelos arcillosos son muy pesados, se agrietan y compactan cuan se secan; en términos de aprovechamiento agrícola, y salvo excepciones, forma suelos poco deseables que necesitan acondicionamiento previo. Estos suelos se corrigen añadiendo arena y tierra virgen de bosque; si la textura es demasiado arcillosa puede ser necesario en ocasiones un sistema de drenaje suplementario.
Entre las texturas arcillosas se distinguen:
- Arcillo-arenosa
Con un 25 a 45% de arcilla, y más del 55% de arena.
- Arcillosa ligera
Con un 25 a 45% de arcilla, y menos del 55% de arena.
- Arcillo-limosa
Con un 25 a 45% de arcilla, y más del 45% de limo.
- Arcillosa pesada
Con más de un 45% de arcilla.
Identificación visual de los suelos
En la mayoría de los casos no es preciso ser un experto agrónomo para identificar visualmente si un suelo es más o menos fértil, y por tanto apto para el cultivo. Aquel que pretenda dedicarse a la agricultura como una ocupación familiar, ocasional o para su propio consumo, puede obtener un rendimiento aceptable de su parcela de terreno con escasos o ningún medio técnico, tan solo mediante la observación y atendiendo a unos cuantos consejos.
Según los componentes minerales y orgánicos que contienen los suelos, así presentan una fertilidad, textura y aspecto diferentes. El color es un parámetro muy interesante para identificar visualmente las características de un suelo. Como norma general, los suelos oscuros son más fértiles que los claros. Esto está motivado por la presencia de mucha materia orgánica, lo que denominamos humus, y que no es más que restos vegetales y animales descompuestos por los microorganismos.
Allí donde existan hojas caídas, restos de plantas muertas, lombrices y otros animales edáficos (propios del suelo), así como una humedad adecuada, darán lugar con el tiempo a la formación de humus por la actividad bacteriana, que la descompone lentamente, incorporándose más tarde al sustrato, mezclándose con él y dándole ese color característico.
Hay que decir no obstante, que existen tierras oscuras o negras que no son fértiles porque su color no es debido a la existencia de humus. Por ejemplo, las tierras próximas a una mina de carbón pueden ser negras, pero su color puede ser debido al contenido de ese mineral, y que obviamente no da fertilidad al suelo. Otro factor que puede oscurecer un suelo al margen de las materias que contenga, y que no sería un indicio de fertilidad, es su extrema humedad permanente, lo que en un principio podría intuirse al tacto.
Los suelos rojizos, o castaño-rojizos suelen ser fértiles. Se trata de suelos que generalmente contienen óxidos de hierro procedentes de la meteorización de las rocas más antiguas, y que no se han visto sometidos a una excesiva humedad, motivo por el cual no reaccionaron con el agua (si lo hicieran formarían suelos amarillos). Estos suelos están habitualmente bien drenados y su nivel de humedad es adecuado para el cultivo de variadas especies vegetales.
Lo comentado es, como se ha dicho, en términos generales, pues existen algunas regiones del mundo en que los colores rojizos pueden ser indicativos de la existencia de minerales de reciente formación, los cuales no serían asimilables para las plantas; en estos casos el suelo podría ser estéril.
Los suelos amarillentos apenas son fértiles. Se trata de suelos que, al igual que ocurre con los rojizos, contienen óxidos de hierro, pero en este caso la excesiva humedad ha hecho que reaccionaran con el agua y formaran ese color. Es indicativo de un terreno mal drenado.
Por su parte, los suelos de color grisáceo pueden ser causa de una deficiencia de hierro, oxígeno, o un exceso de sales alcalinas, las cuales sería necesario reponer o corregir para la práctica del cultivo.
Los suelos agrícolas
Los suelos agrícolas son entornos que se ven sometidos a una actividad física y biológica artificial, ya que son alterados continuamente por la labores humanas.
Para comprender el porqué un suelo agrícola necesita especiales cuidados en comparación con los silvestres, en donde los vegetales crecen libremente y aparentemente sin necesidad de nutrientes externos, es adecuado una breve introducción sobre el concepto de sucesión vegetal.


Interrupción de la sucesión vegetal
Como ya se ha dicho, los suelos agrícolas (también los sujetos a explotación para pastos) están sujetos a las labores humanas, que modifican continuamente sus características con objeto de obtener el beneficio de sus frutos. Estas actividades interrumpen e impiden que se desarrolle de forma natural la llamada sucesión vegetal. Durante este proceso, en un ecosistema, los distintos vegetales nacidos aleatoriamente se ven sometidos a una lucha o competencia constante entre sí por la supremacía y dominio del entorno llamada sucesión, desde un suelo raso, pasando por distintas fases de pradera, arbustos y bosque, hasta alcanzar un grado de estabilidad relativa llamado clímax.
Cuando los vegetales alcanzan el clímax quedan perfectamente adaptados al suelo, luz, clima, entorno, etc., y pueden mantenerse así por mucho tiempo sin más necesidades nutricionales que las recibidas básicamente a través de sus raíces y hojas, mediante un ciclo biológico basado en leyes ecológicas; todo ello salvo que la estabilidad del clímax se vea interrumpida por algún fenómeno externo que rompa el ciclo, ejemplo de lo que sucedería con un incendio, que obligaría a los vegetales a comenzar otra sucesión y competencia por el establecimiento de un nuevo clímax, o en el caso típico de deforestación de un bosque para convertirlo en tierras agrícolas, que destruiría todo el equilibrio de las especies contenidas en él durante muchos años de sucesiones vegetales.
Con esta introducción se pretende explicar que en un suelo agrícola jamás se consigue una sucesión vegetal, y mucho menos un clímax, pues las características de la tierra y las plantas que se cultivan en ellas son continuamente modificadas para obtener un provecho de ellas a corto plazo.
Lo más parecido a una sucesión vegetal en una tierra agrícola, sería la que se produce cuando se abandonan en barbecho por un tiempo para que se regeneren. En este caso, los suelos quedan al arbitrio de la naturaleza; nacerán unas hierbas, otras las ahogarán, aparecerán otras nuevas que conseguirán afirmarse algún tiempo, el clima eliminará a las menos preparadas para soportar determinadas temperaturas, o niveles de agua o sequedad, otras más fuertes sobrevivirán, etc.; a esto se le llama sucesión.
Al final, muchos años después, si el agricultor no comenzase de nuevo a trabajar ese terreno, concluiría estableciéndose en él un clímax con aquellas plantas que han conseguido superar todo el proceso de sucesión, en definitiva con las plantas más fuertes y capaces, y así se mantendrían estables indefinidamente.
Sabido que en un estado clímax las plantas son autosuficientes, se puede entender que en un suelo agrícola se precisen realizar continuos trabajos de acondicionamiento del suelo y aplicación de abonos o nutrientes, pues en estos suelos las plantas asimilan y terminan por consumir los minerales que contienen, careciendo del entorno típico de una asociación clímax para recuperarlos, debiendo por tanto ser añadidos los nutrientes al suelo de forma artificial con objeto de que estén disponibles para las siguientes cosechas.
Los abonos
Ya hemos comentado las razones por las cuales un suelo agrícola debe ser mantenido en sus correctos niveles de elementos minerales. Obtener una cosecha de la tierra supone extraer de ella un conjunto de nutrientes que las plantas han necesitado para formar sus tejidos.
Cuando se recolectan patatas, tomates, plantas de flor, etc., dejamos los suelos carentes de muchos elementos nutritivos que posiblemente serán necesarios para una nueva plantación (aunque determinadas plantas, como las leguminosas, enriquecen el suelo en nitrógeno). Es por ello necesario restituir esos elementos en cada cosecha mediante abonos, sean minerales u orgánicos, o la tierra podría agotarse de forma irreversible.
La adición de elementos fertilizantes a los suelos agrícolas puede realizarse mediante abonos minerales o sintéticos, aunque desde una perspectiva de cultivo biológico es deseable la utilización de abonos orgánicos como los estiércoles y mantillos.
Estiércoles
Los estiércoles son, desde una perspectiva de cultivo biológico, los abonos más apreciados. Permiten mejorar la estructura del suelo, aportar mayor porosidad a los suelos pesados de arcilla, evitar los encharcamientos pero manteniendo un mejor nivel de retención del agua y, sobre todo, favorecer la proliferación de microorganismos que colaboran en todo el proceso de nitrogenado y aireación de las raíces.
Los estiércoles están formados básicamente de los excrementos sólidos y líquidos del ganado. Éstos, aunque podrían utilizarse en fresco, para un mayor rendimiento necesitan fermentar y curar adecuadamente antes de su utilización. El proceso habitual es formar una cama de paja y otros vegetales en la cuadra donde se introduce el animal. La mezcla de los excrementos con los restos vegetales irán creando una materia en descomposición, la cual dejaremos fermentar antes de incorporarla a las tierras que deseemos fertilizar.
Mantillos
El mantillo es un abono natural, también llamado estiércol artificial, producto de la descomposición y fermentación de diversas materias vegetales, y que se puede dejar formar directamente en el lugar donde se vaya realizar la aplicación. Técnicamente, una vez fermentado tenemos humus.
La función típica del mantillo es proteger las raíces de las plantas de las inclemencias atmosféricas, alteraciones de la humedad, o temperaturas extremas, además de facilitar la aireación y evitar la evaporación.
Las características del mantillo en cuanto a riqueza en elementos fertilizantes varía mucho de unas composiciones a otras, debido a los diferentes materiales que se pueden utilizar. En general, el mantillo aporta nitrógeno y fósforo de la misma forma que lo haría el estiércol, aunque posiblemente no posea tanta cantidad de potasio.
La composición del mantillo puede ser a base de estiércol (si no se dispone se puede omitir), hojas, hierba, paja de cereales, aserrín, e incluso cortezas trituradas de árboles (pino, alcornoque, etc.); se debe evitar añadir al mantillo partes leñosas como troncos o palos gruesos, ya que retrasará su fermentación. Este conjunto, disuelto por encima de las raíces, se va descomponiendo y termina con el tiempo formando humus.
Una gran ventaja del mantillo es que las malas hierbas no suelen aflorar a través de él. La utilización del mantillo en nuestro huerto o jardín es una buena opción ecológica que merece la pena.
Turbas
La turba es un mineral de origen orgánico. Es en realidad carbón escasamente petrificado (un carbón muy joven). La turba, mediante la acción de los agentes geológicos, se convertiría después de muchos miles de años en lo que hoy conocemos como carbón mineral.
La composición de la turba varía según el origen de las materias vegetales que intervienen. Son generalmente ácidos y poseen muchos nutrientes aprovechables por las plantas. La tierra de turba es un producto útil para el jardinero, especialmente en la preparación de mezclas para semilleros, macetas, jardineras, etc., aunque potencialmente caro. Es muy deseable para rebajar el nivel de pH en las tierras agrícolas alcalinas; también para mejorar la retención de la humedad y los suelos arcillosos muy pesados.